	Starters
	

	
	What is a PLC?

	
	PLC History

	Theory of Operation
	

	
	The Internals

	
	How it Works

	
	Response Time

	
	Effects of Response Time

	Creating Programs
	

	
	Relays

	
	Replacing Relays

	
	Basic Instructions

	
	Basic Program Example

	
	PLC Registers

	
	A Level Application

	ANIMATED
	How a Ladder is Scanned

	Main Instruction Set
	

	ANIMATED
	Latching Instructions

	ANIMATED
	Counters

	ANIMATED
	Timers

	
	Timer Accuracy

	ANIMATED
	One-Shots

	ANIMATED
	Master Controls

	ANIMATED
	Shift Registers

	ANIMATED
	Moving Data

	Numbers
	

	
	Math

	
	Number Systems

	
	Boolean Math

	Wiring
	

	
	DC Inputs

	
	AC Inputs

	
	Relay Outputs

	
	Transistor Outputs

	Communications
	

	
	Communications History

	
	RS-232 Comm (hardware)

	
	RS-232 Comm (software)

	
	Using RS-232 (Ladder Diagram)

	Manufacturers Links
	

	
	Links

	
	Manufacturers Y2K Pages

What is a PLC?
[image: image1.png]
A PLC (i.e. Programmable Logic Controller) is a device that was invented to replace the necessary sequential relay circuits for machine control. The PLC works by looking at its inputs and depending upon their state, turning on/off its outputs. The user enters a program, usually via software, that gives the desired results.
PLCs are used in many "real world" applications. If there is industry present, chances are good that there is a plc present. If you are involved in machining, packaging, material handling, automated assembly or countless other industries you are probably already using them. If you are not, you are wasting money and time. Almost any application that needs some type of electrical control has a need for a plc.
For example, let's assume that when a switch turns on we want to turn a solenoid on for 5 seconds and then turn it off regardless of how long the switch is on for. We can do this with a simple external timer. But what if the process included 10 switches and solenoids? We would need 10 external timers. What if the process also needed to count how many times the switches individually turned on? We need a lot of external counters.
As you can see the bigger the process the more of a need we have for a PLC. We can simply program the PLC to count its inputs and turn the solenoids on for the specified time.
This site gives you enough information to be able to write programs far more complicated than the simple one above. We will take a look at what is considered to be the "top 20" plc instructions. It can be safely estimated that with a firm understanding of these instructions one can solve more than 80% of the applications in existence.
That's right, more than 80%! Of course we'll learn more than just these instructions to help you solve almost ALL your potential plc applications.
PLC History
In the late 1960's PLCs were first introduced. The primary reason for designing such a device was eliminating the large cost involved in replacing the complicated relay based machine control systems. Bedford Associates (Bedford, MA) proposed something called a Modular Digital Controller (MODICON) to a major US car manufacturer. Other companies at the time proposed computer based schemes, one of which was based upon the PDP-8. The MODICON 084 brought the world's first PLC into commercial production.
When production requirements changed so did the control system. This becomes very expensive when the change is frequent. Since relays are mechanical devices they also have a limited lifetime which required strict adhesion to maintenance schedules. Troubleshooting was also quite tedious when so many relays are involved. Now picture a machine control panel that included many, possibly hundreds or thousands, of individual relays. The size could be mind boggling. How about the complicated initial wiring of so many individual devices! These relays would be individually wired together in a manner that would yield the desired outcome. Were there problems? You bet!
These "new controllers" also had to be easily programmed by maintenance and plant engineers. The lifetime had to be long and programming changes easily performed. They also had to survive the harsh industrial environment. That's a lot to ask! The answers were to use a programming technique most people were already familiar with and replace mechanical parts with solid-state ones.
In the mid70's the dominant PLC technologies were sequencer state-machines and the bit-slice based CPU. The AMD 2901 and 2903 were quite popular in Modicon and A-B PLCs. Conventional microprocessors lacked the power to quickly solve PLC logic in all but the smallest PLCs. As conventional microprocessors evolved, larger and larger PLCs were being based upon them. However, even today some are still based upon the 2903.(ref A-B's PLC-3) Modicon has yet to build a faster PLC than their 984A/B/X which was based upon the 2901.
Communications abilities began to appear in approximately 1973. The first such system was Modicon's Modbus. The PLC could now talk to other PLCs and they could be far away from the actual machine they were controlling. They could also now be used to send and receive varying voltages to allow them to enter the analog world. Unfortunately, the lack of standardization coupled with continually changing technology has made PLC communications a nightmare of incompatible protocols and physical networks. Still, it was a great decade for the PLC!
The 80's saw an attempt to standardize communications with General Motor's manufacturing automation protocol(MAP). It was also a time for reducing the size of the PLC and making them software programmable through symbolic programming on personal computers instead of dedicated programming terminals or handheld programmers. Today the world's smallest PLC is about the size of a single control relay!
The 90's have seen a gradual reduction in the introduction of new protocols, and the modernization of the physical layers of some of the more popular protocols that survived the 1980's. The latest standard (IEC 1131-3) has tried to merge plc programming languages under one international standard. We now have PLCs that are programmable in function block diagrams, instruction lists, C and structured text all at the same time! PC's are also being used to replace PLCs in some applications. The original company who commissioned the MODICON 084 has actually switched to a PC based control system.
What will the 00's bring? Only time will tell.

The Guts Inside
The PLC mainly consists of a CPU, memory areas, and appropriate circuits to receive input/output data. We can actually consider the PLC to be a box full of hundreds or thousands of separate relays, counters, timers and data storage locations. Do these counters, timers, etc. really exist? No, they don't "physically" exist but rather they are simulated and can be considered software counters, timers, etc. These internal relays are simulated through bit locations in registers. (more on that later)
[image: image2.png]
What does each part do?
· INPUT RELAYS-(contacts)These are connected to the outside world. They physically exist and receive signals from switches, sensors, etc. Typically they are not relays but rather they are transistors.
· INTERNAL UTILITY RELAYS-(contacts) These do not receive signals from the outside world nor do they physically exist. They are simulated relays and are what enables a PLC to eliminate external relays. There are also some special relays that are dedicated to performing only one task. Some are always on while some are always off. Some are on only once during power-on and are typically used for initializing data that was stored.
· COUNTERS-These again do not physically exist. They are simulated counters and they can be programmed to count pulses. Typically these counters can count up, down or both up and down. Since they are simulated they are limited in their counting speed. Some manufacturers also include high-speed counters that are hardware based. We can think of these as physically existing. Most times these counters can count up, down or up and down.
· TIMERS-These also do not physically exist. They come in many varieties and increments. The most common type is an on-delay type. Others include off-delay and both retentive and non-retentive types. Increments vary from 1ms through 1s.
· OUTPUT RELAYS-(coils)These are connected to the outside world. They physically exist and send on/off signals to solenoids, lights, etc. They can be transistors, relays, or triacs depending upon the model chosen.
DATA STORAGE-Typically there are registers assigned to simply store data. They are usually used as temporary storage for math or data manipulation. They can also typically be used to store data when power is removed from the PLC. Upon power-up they will still have the same contents as before power was removed. Very convenient and necessary!!
PLC Operation
A PLC works by continually scanning a program. We can think of this scan cycle as consisting of 3 important steps. There are typically more than 3 but we can focus on the important parts and not worry about the others. Typically the others are checking the system and updating the current internal counter and timer values.
[image: image3.png]
Step 1-CHECK INPUT STATUS-First the PLC takes a look at each input to determine if it is on or off. In other words, is the sensor connected to the first input on? How about the second input? How about the third... It records this data into its memory to be used during the next step.
Step 2-EXECUTE PROGRAM-Next the PLC executes your program one instruction at a time. Maybe your program said that if the first input was on then it should turn on the first output. Since it already knows which inputs are on/off from the previous step it will be able to decide whether the first output should be turned on based on the state of the first input. It will store the execution results for use later during the next step.
Step 3-UPDATE OUTPUT STATUS-Finally the PLC updates the status of the outputs. It updates the outputs based on which inputs were on during the first step and the results of executing your program during the second step. Based on the example in step 2 it would now turn on the first output because the first input was on and your program said to turn on the first output when this condition is true.
After the third step the PLC goes back to step one and repeats the steps continuously. One scan time is defined as the time it takes to execute the 3 steps listed above.

Response Time
The total response time of the PLC is a fact we have to consider when shopping for a PLC. Just like our brains, the PLC takes a certain amount of time to react to changes. In many applications speed is not a concern, in others though...
If you take a moment to look away from this text you might see a picture on the wall. Your eyes actually see the picture before your brain says "Oh, there's a picture on the wall". In this example your eyes can be considered the sensor. The eyes are connected to the input circuit of your brain. The input circuit of your brain takes a certain amount of time to realize that your eyes saw something. (If you have been drinking alcohol this input response time would be longer!) Eventually your brain realizes that the eyes have seen something and it processes the data. It then sends an output signal to your mouth. Your mouth receives this data and begins to respond to it. Eventually your mouth utters the words "Gee, that's a really ugly picture!".
	Notice in this example we had to respond to 3 things:
INPUT- It took a certain amount of time for the brain to notice the input signal from the eyes.
EXECUTION- It took a certain amount of time to process the information received from the eyes. Consider the program to be: If the eyes see an ugly picture then output appropriate words to the mouth.
OUTPUT- The mouth receives a signal from the brain and eventually spits (no pun intended) out the words "Gee, that's a really ugly picture!"
	[image: image4.png]

	

[image: image5.png]

Response Time Concerns
Now that we know about response time, here's what it really means to the application. The PLC can only see an input turn on/off when it's looking. In other words, it only looks at its inputs during the check input status part of the scan.
[image: image6.png]
In the diagram, input 1 is not seen until scan 2. This is because when input 1 turned on, scan 1 had already finished looking at the inputs.
Input 2 is not seen until scan 3. This is also because when the input turned on scan 2 had already finished looking at the inputs.
Input 3 is never seen. This is because when scan 3 was looking at the inputs, signal 3 was not on yet. It turns off before scan 4 looks at the inputs. Therefore signal 3 is never seen by the plc.
	[image: image7.png]
	To avoid this we say that the input should be on for at least 1 input delay time + one scan time.

But what if it was not possible for the input to be on this long? Then the plc doesn't see the input turn on. Therefore it becomes a paper weight! Not true... of course there must be a way to get around this. Actually there are 2 ways.
	Pulse stretch function. This function extends the length of the input signal until the plc looks at the inputs during the next scan.(i.e. it stretches the duration of the pulse.)
	[image: image8.png]

	Interrupt function. This function interrupts the scan to process a special routine that you have written. i.e. As soon as the input turns on, regardless of where the scan currently is, the plc immediately stops what its doing and executes an interrupt routine. (A routine can be thought of as a mini program outside of the main program.) After its done executing the interrupt routine, it goes back to the point it left off at and continues on with the normal scan process.
	[image: image9.png]

Now let's consider the longest time for an output to actually turn on. Let's assume that when a switch turns on we need to turn on a load connected to the plc output.
The diagram below shows the longest delay (worst case because the input is not seen until scan 2) for the output to turn on after the input has turned on.
The maximum delay is thus 2 scan cycles - 1 input delay time.
[image: image10.png]
It's not so difficult, now is it ?
Relays
Now that we understand how the PLC processes inputs, outputs, and the actual program we are almost ready to start writing a program. But first lets see how a relay actually works. After all, the main purpose of a plc is to replace "real-world" relays.
We can think of a relay as an electromagnetic switch. Apply a voltage to the coil and a magnetic field is generated. This magnetic field sucks the contacts of the relay in, causing them to make a connection. These contacts can be considered to be a switch. They allow current to flow between 2 points thereby closing the circuit.
Let's consider the following example. Here we simply turn on a bell (Lunch time!) whenever a switch is closed. We have 3 real-world parts. A switch, a relay and a bell. Whenever the switch closes we apply a current to a bell causing it to sound.
[image: image11.png]
Notice in the picture that we have 2 separate circuits. The bottom(blue) indicates the DC part. The top(red) indicates the AC part.
Here we are using a dc relay to control an AC circuit. That's the fun of relays! When the switch is open no current can flow through the coil of the relay. As soon as the switch is closed, however, current runs through the coil causing a magnetic field to build up. This magnetic field causes the contacts of the relay to close. Now AC current flows through the bell and we hear it. Lunch time!
[image: image12.png]A typical industrial relay
Replacing Relays
Next, lets use a plc in place of the relay. (Note that this might not be very cost effective for this application but it does demonstrate the basics we need.) The first thing that's necessary is to create what's called a ladder diagram. After seeing a few of these it will become obvious why its called a ladder diagram. We have to create one of these because, unfortunately, a plc doesn't understand a schematic diagram. It only recognizes code. Fortunately most PLCs have software which convert ladder diagrams into code. This shields us from actually learning the plc's code.
First step- We have to translate all of the items we're using into symbols the plc understands. The plc doesn't understand terms like switch, relay, bell, etc. It prefers input, output, coil, contact, etc. It doesn't care what the actual input or output device actually is. It only cares that its an input or an output.
First we replace the battery with a symbol. This symbol is common to all ladder diagrams. We draw what are called bus bars. These simply look like two vertical bars. One on each side of the diagram. Think of the left one as being + voltage and the right one as being ground. Further think of the current (logic) flow as being from left to right.
Next we give the inputs a symbol. In this basic example we have one real world input. (i.e. the switch) We give the input that the switch will be connected to, to the symbol shown below. This symbol can also be used as the contact of a relay.
[image: image13.png]A contact symbol
Next we give the outputs a symbol. In this example we use one output (i.e. the bell). We give the output that the bell will be physically connected to the symbol shown below. This symbol is used as the coil of a relay.
[image: image14.png]A coil symbol
The AC supply is an external supply so we don't put it in our ladder. The plc only cares about which output it turns on and not what's physically connected to it.
Second step- We must tell the plc where everything is located. In other words we have to give all the devices an address. Where is the switch going to be physically connected to the plc? How about the bell? We start with a blank road map in the PLCs town and give each item an address. Could you find your friends if you didn't know their address? You know they live in the same town but which house? The plc town has a lot of houses (inputs and outputs) but we have to figure out who lives where (what device is connected where). We'll get further into the addressing scheme later. The plc manufacturers each do it a different way! For now let's say that our input will be called "0000". The output will be called "500".
Final step- We have to convert the schematic into a logical sequence of events. This is much easier than it sounds. The program we're going to write tells the plc what to do when certain events take place. In our example we have to tell the plc what to do when the operator turns on the switch. Obviously we want the bell to sound but the plc doesn't know that. It's a pretty stupid device, isn't it!
[image: image15.png]
The picture above is the final converted diagram. Notice that we eliminated the real world relay from needing a symbol. It's actually "inferred" from the diagram. Huh? Don't worry, you'll see what we mean as we do more examples.
Basic Instructions
Now let's examine some of the basic instructions is greater detail to see more about what each one does.
Load
The load (LD) instruction is a normally open contact. It is sometimes also called examine if on.(XIO) (as in examine the input to see if its physically on) The symbol for a load instruction is shown below.
[image: image16.png]A LoaD (contact) symbol
This is used when an input signal is needed to be present for the symbol to turn on. When the physical input is on we can say that the instruction is True. We examine the input for an on signal. If the input is physically on then the symbol is on. An on condition is also referred to as a logic 1 state.
This symbol normally can be used for internal inputs, external inputs and external output contacts. Remember that internal relays don't physically exist. They are simulated (software) relays.
LoadBar
The LoaDBar instruction is a normally closed contact. It is sometimes also called LoaDNot or examine if closed. (XIC) (as in examine the input to see if its physically closed) The symbol for a loadbar instruction is shown below.
[image: image17.png]A LoaDNot (normally closed contact) symbol
This is used when an input signal does not need to be present for the symbol to turn on. When the physical input is off we can say that the instruction is True. We examine the input for an off signal. If the input is physically off then the symbol is on. An off condition is also referred to as a logic 0 state.
This symbol normally can be used for internal inputs, external inputs and sometimes, external output contacts. Remember again that internal relays don't physically exist. They are simulated (software) relays. It is the exact opposite of the Load instruction.
*NOTE- With most PLCs this instruction (Load or Loadbar) MUST be the first symbol on the left of the ladder.
	Logic State
	Load
	LoadBar

	0
	False
	True

	1
	True
	False

Out
The Out instruction is sometimes also called an OutputEnergize instruction. The output instruction is like a relay coil. Its symbol looks as shown below.
[image: image18.png]An OUT (coil) symbol
When there is a path of True instructions preceding this on the ladder rung, it will also be True. When the instruction is True it is physically On. We can think of this instruction as a normally open output. This instruction can be used for internal coils and external outputs.
Outbar
The Outbar instruction is sometimes also called an OutNot instruction. Some vendors don't have this instruction. The outbar instruction is like a normally closed relay coil. Its symbol looks like that shown below.
[image: image19.png]An OUTBar (normally closed coil) symbol
When there is a path of False instructions preceding this on the ladder rung, it will be True. When the instruction is True it is physically On. We can think of this instruction as a normally closed output. This instruction can be used for internal coils and external outputs. It is the exact opposite of the Out instruction.
	Logic State
	Out
	OutBar

	0
	False
	True

	1
	True
	False

A Simple Example
Now let's compare a simple ladder diagram with its real world external physically connected relay circuit and SEE the differences.
[image: image20.png]
In the above circuit, the coil will be energized when there is a closed loop between the + and - terminals of the battery. We can simulate this same circuit with a ladder diagram. A ladder diagram consists of individual rungs just like on a real ladder. Each rung must contain one or more inputs and one or more outputs. The first instruction on a rung must always be an input instruction and the last instruction on a rung should always be an output (or its equivalent).
[image: image21.png]
Notice in this simple one rung ladder diagram we have recreated the external circuit above with a ladder diagram. Here we used the Load and Out instructions. Some manufacturers require that every ladder diagram include an END instruction on the last rung. Some PLCs also require an ENDH instruction on the rung after the END rung.
Next we'll trace the registers. Registers? Let's see...
PLC Registers
We'll now take the previous example and change switch 2 (SW2) to a normally closed symbol (loadbar instruction). SW1 will be physically OFF and SW2 will be physically ON initially. The ladder diagram now looks like this:
[image: image22.png]
Notice also that we now gave each symbol (or instruction) an address. This address sets aside a certain storage area in the PLCs data files so that the status of the instruction (i.e. true/false) can be stored. Many PLCs use 16 slot or bit storage locations. In the example above we are using two different storage locations or registers.
	REGISTER 00

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	1
	0

	REGISTER 05

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0

In the tables above we can see that in register 00, bit 00 (i.e. input 0000) was a logic 0 and bit 01 (i.e. input 0001) was a logic 1. Register 05 shows that bit 00 (i.e. output 0500) was a logic 0. The logic 0 or 1 indicates whether an instruction is False or True. *Although most of the items in the register tables above are empty, they should each contain a 0. They were left blank to emphasize the locations we were concerned with.
	LOGICAL CONDITION OF SYMBOL

	LOGIC BITS
	LD
	LDB
	OUT

	Logic 0
	False
	True
	False

	Logic 1
	True
	False
	True

The plc will only energize an output when all conditions on the rung are TRUE. So, looking at the table above, we see that in the previous example SW1 has to be logic 1 and SW2 must be logic 0. Then and ONLY then will the coil be true (i.e. energized). If any of the instructions on the rung before the output (coil) are false then the output (coil) will be false (not energized).
Let's now look at a truth table of our previous program to further illustrate this important point. Our truth table will show ALL possible combinations of the status of the two inputs.
	Inputs
	Outputs
	Register Logic Bits

	SW1(LD)
	SW2(LDB)
	COIL(OUT)
	SW1(LD)
	SW2(LDB)
	COIL(OUT)

	False
	True
	False
	0
	0
	0

	False
	False
	False
	0
	1
	0

	True
	True
	True
	1
	0
	1

	True
	False
	False
	1
	1
	0

Notice from the chart that as the inputs change their states over time, so will the output. The output is only true (energized) when all preceding instructions on the rung are true.
	A Level Application
Now that we've seen how registers work, let's process a program like PLCs do to enhance our understanding of how the program gets scanned.
Let's consider the following application:
We are controlling lubricating oil being dispensed from a tank. This is possible by using two sensors. We put one near the bottom and one near the top, as shown in the picture below.
[image: image23.png]
Here, we want the fill motor to pump lubricating oil into the tank until the high level sensor turns on. At that point we want to turn off the motor until the level falls below the low level sensor. Then we should turn on the fill motor and repeat the process.
Here we have a need for 3 I/O (i.e. Inputs/Outputs). 2 are inputs (the sensors) and 1 is an output (the fill motor). Both of our inputs will be NC (normally closed) fiber-optic level sensors. When they are NOT immersed in liquid they will be ON. When they are immersed in liquid they will be OFF.
We will give each input and output device an address. This lets the plc know where they are physically connected. The addresses are shown in the following tables:
Inputs
Address
Output
Address
Internal Utility Relay
Low
0000
Motor
0500
1000
High
0001
Below is what the ladder diagram will actually look like. Notice that we are using an internal utility relay in this example. You can use the contacts of these relays as many times as required. Here they are used twice to simulate a relay with 2 sets of contacts. Remember, these relays DO NOT physically exist in the plc but rather they are bits in a register that you can use to SIMULATE a relay.
[image: image24.png]
We should always remember that the most common reason for using PLCs in our applications is for replacing real-world relays. The internal utility relays make this action possible. It's impossible to indicate how many internal relays are included with each brand of plc. Some include 100's while other include 1000's while still others include 10's of 1000's! Typically, plc size (not physical size but rather I/O size) is the deciding factor. If we are using a micro-plc with a few I/O we don't need many internal relays. If however, we are using a large plc with 100's or 1000's of I/O we'll certainly need many more internal relays.
If ever there is a question as to whether or not the manufacturer supplies enough internal relays, consult their specification sheets. In all but the largest of large applications, the supplied amount should be MORE than enough.

	

	

The Program Scan
Let's watch what happens in this program scan by scan.
[image: image25.png]
Initially the tank is empty. Therefore, input 0000 is TRUE and input 0001 is also TRUE.
	[image: image26.png]
Scan 1
	[image: image27.png]
Scan 2-100

Gradually the tank fills because 500(fill motor) is on.
After 100 scans the oil level rises above the low level sensor and it becomes open. (i.e. FALSE)
[image: image28.png]
Scan 101-1000
Notice that even when the low level sensor is false there is still a path of true logic from left to right. This is why we used an internal relay. Relay 1000 is latching the output (500) on. It will stay this way until there is no true logic path from left to right.(i.e. when 0001 becomes false)
After 1000 scans the oil level rises above the high level sensor at it also becomes open (i.e. false)
	[image: image29.png]
Scan 1001
	[image: image30.png]
Scan 1002

Since there is no more true logic path, output 500 is no longer energized (true) and therefore the motor turns off.
After 1050 scans the oil level falls below the high level sensor and it will become true again.
[image: image31.png]
Scan 1050
Notice that even though the high level sensor became true there still is NO continuous true logic path and therefore coil 1000 remains false!
After 2000 scans the oil level falls below the low level sensor and it will also become true again. At this point the logic will appear the same as SCAN 1 above and the logic will repeat as illustrated above.
Click here

and view the animation to really learn!
	Latch Instructions
Now that we understand how inputs and outputs are processed by the plc, let's look at a variation of our regular outputs. Regular output coils are of course an essential part of our programs but we must remember that they are only TRUE when ALL INSTRUCTIONS before them on the rung are also TRUE. What happens if they are not? Then of course, the output will become false.(turn off)
Think back to the lunch bell example we did a few chapters ago. What would've happened if we couldn't find a "push on/push off" switch? Then we would've had to keep pressing the button for as long as we wanted the bell to sound. (A momentary switch) The latching instructions let us use momentary switches and program the plc so that when we push one the output turns on and when we push another the output turns off.
Maybe now you're saying to yourself "What the heck is he talking about?". (It's also what I'm thinking!) So let's do a real world example.
Picture the remote control for your TV. It has a button for ON and another for OFF. (mine does, anyway) When I push the ON button the TV turns on. When I push the OFF button the TV turns off. I don't have to keep pushing the ON button to keep the TV on. This would be the function of a latching instruction.
The latch instruction is often called a SET or OTL (output latch). The unlatch instruction is often called a RES (reset), OUT (output unlatch) or RST (reset). The diagram below shows how to use them in a program.
[image: image33.png]
Here we are using 2 momentary push button switches. One is physically connected to input 0000 while the other is physically connected to input 0001. When the operator pushes switch 0000 the instruction "set 0500" will become true and output 0500 physically turns on. Even after the operator stops pushing the switch, the output (0500) will remain on. It is latched on. The only way to turn off output 0500 is turn on input 0001. This will cause the instruction "res 0500" to become true thereby unlatching or resetting output 0500.
Click here

and view the animation to really learn!
Here's something to think about. What would happen if input 0000 and 0001 both turn on at the exact same time.
Will output 0500 be latched or unlatched?
To answer this question we have to think about the scanning sequence. The ladder is always scanned from top to bottom, left to right. The first thing in the scan is to physically look at the inputs. 0000 and 0001 are both physically on. Next the plc executes the program. Starting from the top left, input 0000 is true therefore it should set 0500. Next it goes to the next rung and since input 0001 is true it should reset 0500. The last thing it said was to reset 0500. Therefore on the last part of the scan when it updates the outputs it will keep 0500 off. (i.e. reset 0500).
Makes better sense now, doesn't it?

	

	

Counters
A counter is a simple device intended to do one simple thing - count. Using them, however, can sometimes be a challenge because every manufacturer (for whatever reason) seems to use them a different way. Rest assured that the following information will let you simply and easily program anybody's counters.
What kinds of counters are there? Well, there are up-counters (they only count up 1,2,3...). These are called CTU,(count up) CNT,C, or CTR. There are down counters (they only count down 9,8,7,...). These are typically called CTD (count down) when they are a separate instruction. There are also up-down counters (they count up and/or down 1,2,3,4,3,2,3,4,5,...) These are typically called UDC(up-down counter) when they are separate instructions.
Many manufacturers have only one or two types of counters but they can be used to count up, down or both. Confused yet? Can you say "no standardization"? Don't worry, the theory is all the same regardless of what the manufacturers call them. A counter is a counter is a counter...
To further confuse the issue, most manufacturers also include a limited number of high-speed counters. These are commonly called HSC (high-speed counter), CTH (CounTer High-speed?) or whatever.
Typically a high-speed counter is a "hardware" device. The normal counters listed above are typically "software" counters. In other words they don't physically exist in the plc but rather they are simulated in software. Hardware counters do exist in the plc and they are not dependent on scan time.
A good rule of thumb is simply to always use the normal (software) counters unless the pulses you are counting will arrive faster than 2X the scan time. (i.e. if the scan time is 2ms and pulses will be arriving for counting every 4ms or longer then use a software counter. If they arrive faster than every 4ms (3ms for example) then use the hardware (high-speed) counters. (2xscan time = 2x2ms= 4ms)
To use them we must know 3 things:
1. Where the pulses that we want to count are coming from. Typically this is from one of the inputs.(a sensor connected to input 0000 for example)
2. How many pulses we want to count before we react. Let's count 5 widgets before we box them, for example.
3. When/how we will reset the counter so it can count again. After we count 5 widgets lets reset the counter, for example.
When the program is running on the plc the program typically displays the current or "accumulated" value for us so we can see the current count value.
Typically counters can count from 0 to 9999, -32,768 to +32,767 or 0 to 65535. Why the weird numbers? Because most PLCs have 16-bit counters. We'll get into what this means in a later chapter but for now suffice it to say that 0-9999 is 16-bit BCD (binary coded decimal) and that -32,768 to 32767 and 0 to 65535 is 16-bit binary.
Here are some of the instruction symbols we will encounter (depending on which manufacturer we choose) and how to use them. Remember that while they may look different they are all used basically the same way. If we can setup one we can setup any of them.
[image: image35.png]
In this counter we need 2 inputs.
One goes before the reset line. When this input turns on the current (accumulated) count value will return to zero.
The second input is the address where the pulses we are counting are coming from.
For example, if we are counting how many widgets pass in front of the sensor that is physically connected to input 0001 then we would put normally open contacts with the address 0001 in front of the pulse line.
Cxxx is the name of the counter. If we want to call it counter 000 then we would put "C000" here.
yyyyy is the number of pulses we want to count before doing something. If we want to count 5 widgets before turning on a physical output to box them we would put 5 here. If we wanted to count 100 widgets then we would put 100 here, etc. When the counter is finished (i.e we counted yyyyy widgets) it will turn on a separate set of contacts that we also label Cxxx.
Note that the counter accumulated value ONLY changes at the off to on transition of the pulse input.
[image: image36.png]
Here's the symbol on a ladder showing how we set up a counter (we'll name it counter 000) to count 100 widgets from input 0001 before turning on output 500. Sensor 0002 resets the counter.
Below is one symbol we may encounter for an up-down counter. We'll use the same abbreviation as we did for the example above.(i.e. UDCxxx and yyyyy)
[image: image37.png]
In this up-down counter we need to assign 3 inputs. The reset input has the same function as above. However, instead of having only one input for the pulse counting we now have 2. One is for counting up and the other is for counting down. In this example we will call the counter UDC000 and we will give it a preset value of 1000. (we'll count 1000 total pulses) For inputs we'll use a sensor which will turn on input 0001 when it sees a target and another sensor at input 0003 will also turn on when it sees a target. When input 0001 turns on we count up and when input 0003 turns on we count down. When we reach 1000 pulses we will turn on output 500. Again note that the counter accumulated value ONLY changes at the off to on transition of the pulse input. The ladder diagram is shown below.
[image: image38.png]
Click here

and view the animation to really learn!
One important thing to note is that counters and timers can't have the same name (in most PLCs). This is because they typically use the same registers. We haven't learned about timers yet but you might make a note of this for future reference because it's pretty important.
Well, the counters above might seem difficult to understand but they're actually quite easy once we get used to using them. They certainly are an essential tool. They are also one of the least "standardized" basic instructions that we will see. However, always remember that the theory is the same from manufacturer to manufacturer!
Timers
Let's now see how a timer works. What is a timer? Its exactly what the word says... it is an instruction that waits a set amount of time before doing something. Sounds simple doesn't it.
When we look at the different kinds of timers available the fun begins. As always, different types of timers are available with different manufacturers. Here are most of them:
· On-Delay timer-This type of timer simply "delays turning on". In other words, after our sensor (input) turns on we wait x-seconds before activating a solenoid valve (output). This is the most common timer. It is often called TON (timer on-delay), TIM (timer) or TMR (timer).
· Off-Delay timer- This type of timer is the opposite of the on-delay timer listed above. This timer simply "delays turning off". After our sensor (input) sees a target we turn on a solenoid (output). When the sensor no longer sees the target we hold the solenoid on for x-seconds before turning it off. It is called a TOF (timer off-delay) and is less common than the on-delay type listed above. (i.e. few manufacturers include this type of timer)
· Retentive or Accumulating timer- This type of timer needs 2 inputs. One input starts the timing event (i.e. the clock starts ticking) and the other resets it. The on/off delay timers above would be reset if the input sensor wasn't on/off for the complete timer duration. This timer however holds or retains the current elapsed time when the sensor turns off in mid-stream. For example, we want to know how long a sensor is on for during a 1 hour period. If we use one of the above timers they will keep resetting when the sensor turns off/on. This timer however, will give us a total or accumulated time. It is often called an RTO (retentive timer) or TMRA (accumulating timer).
Let's now see how to use them. We typically need to know 2 things:
1. What will enable the timer. Typically this is one of the inputs.(a sensor connected to input 0000 for example)
2. How long we want to delay before we react. Let's wait 5 seconds before we turn on a solenoid, for example.
When the instructions before the timer symbol are true the timer starts "ticking". When the time elapses the timer will automatically close its contacts. When the program is running on the plc the program typically displays the elapsed or "accumulated" time for us so we can see the current value. Typically timers can tick from 0 to 9999 or 0 to 65535 times.
Why the weird numbers? Again its because most PLCs have 16-bit timers. We'll get into what this means in a later chapter but for now suffice it to say that 0-9999 is 16-bit BCD (binary coded decimal) and that 0 to 65535 is 16-bit binary. Each tick of the clock is equal to x-seconds.
Typically each manufacturer offers several different ticks. Most manufacturers offer 10 and 100 ms increments (ticks of the clock). An "ms" is a milli-second or 1/1000th of a second. Several manufacturers also offer 1ms as well as 1 second increments. These different increment timers work the same as above but sometimes they have different names to show their timebase. Some are TMH (high speed timer), TMS (super high speed timer) or TMRAF (accumulating fast timer)
Shown below is a typical timer instruction symbol we will encounter (depending on which manufacturer we choose) and how to use it. Remember that while they may look different they are all used basically the same way. If we can setup one we can setup any of them.
[image: image40.png]
This timer is the on-delay type and is named Txxx. When the enable input is on the timer starts to tick. When it ticks yyyyy (the preset value) times, it will turn on its contacts that we will use later in the program. Remember that the duration of a tick (increment) varies with the vendor and the timebase used. (i.e. a tick might be 1ms or 1 second or...)
Below is the symbol shown on a ladder diagram:[image: image41.png]
In this diagram we wait for input 0001 to turn on. When it does, timer T000 (a 100ms increment timer) starts ticking. It will tick 100 times. Each tick (increment) is 100ms so the timer will be a 10000ms (i.e. 10 second) timer. 100ticks X 100ms = 10,000ms. When 10 seconds have elapsed, the T000 contacts close and 500 turns on. When input 0001 turns off(false) the timer T000 will reset back to 0 causing its contacts to turn off(become false) thereby making output 500 turn back off.
Click here

and view the animation to really learn!
An accumulating timer would look similar to this:
[image: image43.png]
This timer is named Txxx. When the enable input is on the timer starts to tick. When it ticks yyyyy (the preset value) times, it will turn on its contacts that we will use later in the program. Remember that the duration of a tick (increment) varies with the vendor and the timebase used. (i.e. a tick might be 1ms or 1 second or...) If however, the enable input turns off before the timer has completed, the current value will be retained. When the input turns back on, the timer will continue from where it left off. The only way to force the timer back to its preset value to start again is to turn on the reset input.
The symbol is shown in the ladder diagram below.[image: image44.png]
In this diagram we wait for input 0002 to turn on. When it does timer T000 (a 10ms increment timer) starts ticking. It will tick 100 times. Each tick (increment) is 10ms so the timer will be a 1000ms (i.e. 1 second) timer. 100ticks X 10ms = 1,000ms. When 1 second has elapsed, the T000 contacts close and 500 turns on. If input 0002 turns back off the current elapsed time will be retained. When 0002 turns back on the timer will continue where it left off. When input 0001 turns on (true) the timer T000 will reset back to 0 causing its contacts to turn off (become false) thereby making output 500 turn back off.
Click here

and view the animation to really learn!
One important thing to note is that counters and timers can't have the same name (in most PLCs). This is because they typically use the same registers.
Always remember that although the symbols may look different they all operate the same way. Typically the major differences are in the duration of the ticks increments.
Timer Accuracy
Now that we've seen how timers are created and used, let's learn a little about their precision. When we are creating a timer that lasts a few seconds, or more, we can typically not be very concerned about their precision because it's usually insignificant. However, when we're creating timers that have a duration in the millisecond (1ms= 1/1000 second) range we MUST be concerned about their precision.
There are general two types of errors when using a timer. The first is called an input error. The other is called an output error. The total error is the sum of both the input and output errors.
· Input error- An error occurs depending upon when the timer input turns on during the scan cycle. When the input turns on immediately after the plc looks at the status of the inputs during the scan cycle, the input error will be at its largest. (i.e. more than 1 full scan time!). This is because, as you will recall, (see scan time chapter) the inputs are looked at once during a scan. If it wasn't on when the plc looked and turns on later in the scan we obviously have an error. Further we have to wait until the timer instruction is executed during the program execution part of the scan. If the timer instruction is the last instruction on the rung it could be quite a big error!
· Output error- An another error occurs depending upon when in the ladder the timer actually "times out" (expires) and when the plc finishes executing the program to get to the part of the scan when it updates the outputs. (again, see scan time chapter) This is because the timer finishes during the program execution but the plc must first finish executing the remainder of the program before it can turn on the appropriate output.
Below is a diagram illustrating the worst possible input error. You will note from it that the worst possible input error would be 1 complete scan time + 1 program execution time. Remember that a program execution time varies from program to program. (depends how many instructions are in the program!)
[image: image46.png]
Shown below is a diagram illustrating the worst possible output error. You can see from it that the worst possible output error would be 1 complete scan time.
[image: image47.png]
Based upon the above information we can now see that the total worst possible timer error would be equal to:
1 scan time + 1 program execution time + 1 scan time
= 2 scan times + 1 program execution time.
What does this really mean? It means that even though most manufacturers currently have timers with 1ms increments they really shouldn't be used for durations less than a few milliseconds. This assumes that your scan time is 1ms. If your scan time is 5ms you had better not use a timer with a duration less than about 15ms. The point is however, just so that we will know what errors we can expect. If we know what error to expect, we can then think about whether this amount of error is acceptable for our application. In most applications this error is insignificant but in some high speed or very precise applications this error can be VERY significant.
We should also note that the above errors are only the "software errors". There is also a hardware input error as well as a hardware output error.
The hardware input error is caused by the time it takes for the plc to actually realize that the input is on when it scans its inputs. Typically this duration is about 10ms. This is because many PLCs require that an input should be physically on for a few scans before it determines its physically on. (to eliminate noise or "bouncing" inputs)
The hardware output error is caused by the time it takes from when the plc tells its output to physically turn on until the moment it actually does. Typically a transistor takes about 0.5ms whereas a mechanical relay takes about 10ms.
The error keeps on growing doesn't it! If it becomes too big for the application, consider using an external "hardware" timer.
One-shots
A one-shot is an interesting and invaluable programming tool. At first glance it might be difficult to figure out why such an instruction is needed. After we understand what this instruction does and how to use it, however, the necessity will become clear.
A one-shot is used to make something happen for ONLY 1 SCAN. (you do remember what a scan is, right??) Most manufacturers have one-shots that react to an off to on transition and a different type that reacts to an on to off transition. Some names for the instructions could be difu/difd (differentiate up/down), sotu/sotd (single output up/down), osr (one-shot rising) and others. They all, however, end up with the same result regardless of the name.
[image: image48.png]One-shot Instruction
Above is the symbol for a difu (one-shot) instruction. A difd looks the same but inside the symbol it says "difd". Some of the manufacturers have it in the shape of a box but, regardless of the symbol, they all function the same way. For those manufacturers that don't include a differentiate down instruction, you can get the same effect by putting a NC (normally closed) instruction before it instead of a NO(normally open) instruction. (i.e. reverse the logic before the difu instruction)
Let's now setup an application to see how this instruction actually functions in a ladder. This instruction is most often used with some of the advanced instructions where we do some things that MUST happen only once. However, since we haven't gotten that far yet, let's set up a flip/flop circuit. In simple terms, a flip/flop turns something around each time an action happens. Here we'll use a single pushbutton switch. The first time the operator pushes it we want an output to turn on. It will remain "latched" on until the next time the operator pushes the button. When he does, the output turns off.
Here's the ladder diagram that does just that:[image: image49.png]
Now this looks confusing! Actually it's not if we take it one step at a time.
· Rung 1-When NO (normally open) input 0000 becomes true DIFU 1000 becomes true.
· Rung 2- NO 1000 is true, NO 1001 remains false, NC 1001 remains true, NC 1000 turns false. Since we have a true path, (NO 1000 & NC 1001) OUT 1001 becomes true.
· Rung 3- NO 1001 is true therefore OUT 500 turns true.
Next Scan
· Rung 1- NO 0000 remains true. DIFU 1000 now becomes false. This is because the DIFU instruction is only true for one scan. (i.e. the rising edge of the logic before it on the rung)
· Rung 2- NO 1000 is false, NO 1001 remains true, NC 1001 is false, NC 1000 turns true. Since we STILL have a true path, (NO 1001 & NC 1000) OUT 1001 remains true.
· Rung 3- NO 1001 is true therefore OUT 500 remains true.
After 100 scans, NO 0000 turns off (becomes false). The logic remains in the same state as "next scan" shown above. (difu doesn't react therefore the logic stays the same on rungs 2 and 3)
On scan 101 NO 0000 turns back on. (becomes true)
· Rung 1-When NO (normally open) input 0000 becomes true DIFU 1000 becomes true.
· Rung 2- NO 1000 is true, NO 1001 remains true, NC 1001 becomes false, NC 1000 also becomes false. Since we no longer have a true path, OUT 1001 becomes false.
· Rung 3- NO 1001 is false therefore OUT 500 becomes false.
Click here

and view the animation to really learn!
Executing the program 1 instruction at a time makes this and any program easy to follow. Actually a larger program that jumps around might be difficult to follow but a pencil drawing of the registers sure does help!
Master Controls
Let's now look at what are called master controls. Master controls can be thought of as "emergency stop switches". An emergency stop switch typically is a big red button on a machine that will shut it off in cases of emergency. Next time you're at the local gas station look near the door on the outside to see an example of an e-stop.
*IMPORTANT- We're not implying that this instruction is a substitute for a "hard wired" e-stop switch. There is no substitute for such a switch! Rather it's just an easy way to get to understand them.
The master control instruction typically is used in pairs with a master control reset. However this varies by manufacturer. Some use MCR in pairs instead of teaming it with another symbol. It is commonly abbreviated as MC/MCR (master control/master control reset), MCS/MCR (master control set/master control reset) or just simply MCR (master control reset).
Here is one example of how a master control symbol looks.[image: image51.png]
Below is an example of a master control reset.
[image: image52.png]
To make things interesting, many manufacturers make them act differently. Let's now take a look at how it's used in a ladder diagram. Consider the following example:
[image: image53.png]
Here's how different PLCs will run this program:
Manufacturer X- In this example, rungs 2 and 3 are only executed when input 0000 is on (true). If input 0000 is not true the plc pretends that the logic between the mc and mcr instructions does not exist. It would therefore bypass this block of instructions and immediately go to the rung after the mcr instruction.
Conversely, if input 0000 is true, the plc would execute rungs 2 and 3 and update the status of outputs 0500 and 0501 accordingly. So, if input 0000 is true, program execution goes to rung 2. If input 0001 is true 0500 will be true and hence it will turn on when the plc updates the outputs. If input 0002 is true (i.e. physically off) 0501 will be true and therefore it will turn on when the plc updates the outputs.
MCR just tells the plc "that's the end of the mc/mcr block".
In this plc, scan time is not extended when the mc/mcr block is not executed because the plc pretends the logic in the block doesn't exist. In other words, the instructions inside the block aren't seen by the plc and therefore it doesn't execute them.
Click here

and view the animation to really learn!
Manufacturer Y- In this example, rungs 2 and 3 are always executed regardless of the status of input 0000. If input 0000 is not true the plc executes the MC instruction. (i.e. MC becomes true) It then forces all the input instructions inside the block to be off. If input 0000 is true the MC instruction is made to be false.
Then, if input 0000 is true, program execution goes to rung 2. If input 0001 is true 0500 will be true and hence it will turn on when the plc updates the outputs. If input 0002 is true (i.e. physically off) 0501 will be true and therefore it will turn on when the plc updates the outputs. MCR just tells the plc "that's the end of the mc/mcr block". When input 0000 is false, inputs 0001 and 0002 are forced off regardless if they're physically on or off. Therefore, outputs 0500 and 0501 will be false.
The difference between manufacturers X and Y above is that in the Y scheme the scan time will be the same (well close to the same) regardless if the block is on or off. This is because the plc sees each instruction whether the block is on or off.
Most all manufacturers will make a previously latched instruction (one that's inside the mc/mcr block) retain its previous condition.
If it was true before, it will remain true.
If it was false before, it will remain false.
Timers should not be used inside the mc/mcr block because some manufacturers will reset them to zero when the block is false whereas other manufacturers will have them retain the current time state.
Counters typically retain their current counted value.
Here's the part to note most of all. When the mc/mcr block is off, (i.e. input 0000 would be false in the ladder example shown previously) an OUTB (OutBar or OutNot) instruction would not be physically on. It is forced physically off.
[image: image55.png]OutBar instruction
In summary, BE CAREFUL! Most manufacturers use the manufacturer Y execution scheme shown above. When in doubt, however, read the manufacturers instruction manual. Better yet, just ask them.
Shift Registers
In many applications it is necessary to store the status of an event that has previously happened. As we've seen in past chapters this is a simple process. But what do we do if we must store many previous events and act upon them later.
Answer: we call upon the shift register instruction.
We use a register or group of registers to form a train of bits (cars) to store the previous on/off status. Each new change in status gets stored in the first bit and the remaining bits get shifted down the train. Huh? Read on.
The shift register goes by many names. SFT (ShiFT), BSL (Bit Shift Left), SFR (Shift Forward Register) are some of the common names. These registers shift the bits to the left. BSR (Bit Shift Right) and SFRN (Shift Forward Register Not) are some examples of instructions that shift bits to the right. We should note that not all manufacturers have shift registers that shift data to the right but most all do have left shifting registers.
[image: image56.png]
A typical shift register instruction has a symbol like that shown above. Notice that the symbol needs 3 inputs and has some data inside the symbol.
The reasons for each input are as follows:
· Data- The data input gathers the true/false statuses that will be shifted down the train. When the data input is true the first bit (car) in the register (train) will be a 1. This data is only entered into the register (train) on the rising edge of the clock input.
· Clock- The clock input tells the shift register to "do its thing". On the rising edge of this input, the shift register shifts the data one location over inside the register and enters the status of the data input into the first bit. On each rising edge of this input the process will repeat.
· Reset- The reset input does just what it says. It clears all the bits inside the register we're using to 0.
The 1000 inside the shift register symbol is the location of the first bit of our shift register. If we think of the shift register as a train (a choo-choo train that is) then this bit is the locomotive. The 1003 inside the symbol above is the last bit of our shift register. It is the caboose. Therefore, we can say that 1001 and 1002 are cars in between the locomotive and the caboose. They are intermediate bits. So, this shift register has 4 bits.(i.e. 1000,1001,1002,1003)
[image: image57.png]
Lets examine an application to see why/how we can use the shift register.
Imagine an ice-cream cone machine. We have 4 steps. First we verify the cone is not broken. Next we put ice cream inside the cone.(turn on output 500) Next we add peanuts.(turn on output 501) And finally we add sprinkles.(turn on output 502) If the cone is broken we obviously don't want to add ice cream and the other items. Therefore we have to track the bad cone down our process line so that we can tell the machine not to add each item. We use a sensor to look at the bottom of the cone. (input 0000) If its on then the cone is perfect and if its off then the cone is broken. An encoder tracks the cone going down the conveyor. (input 0001) A push button on the machine will clear the register. (input 0002)
Here's what the ladder would look like:
[image: image58.png]
Let's now follow the shift register as the operation takes place. Here's what the 1000 series register (the register we're shifting) looks like initially:
	10xx Register

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	0
	0
	0
	0

A good cone comes in front of the sensor (input 0000). The sensor (data input) turns on. 1000 will not turn on until the rising edge of the encoder (input 0001). Finally the encoder now generates a pulse and the status of the data input (cone sensor input 0000) is transferred to bit 1000. The register now looks like:
	10xx Register

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	0
	0
	0
	1

As the conveying system moves on, another cone comes in front of the sensor. This time it's a broken cone and the sensor remains off. Now the encoder generates another pulse. The old status of bit 1000 is transferred to bit 1001. The old status of 1001 shifts to 1002. The old status of 1002 shifts to 1003. And the new status of the data input (cone sensor) is transferred to bit 1000. The register now looks like:
	10xx Register

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	0
	0
	1
	0

Since the register shows that 1001 is now on, the ladder says that output 0500 will turn on and ice cream is put in the cone.
As the conveying system continues to move on, another cone comes in front of the sensor. This time it's a good cone and the sensor turns on. Now the encoder generates another pulse. The old status of bit 1000 is transferred to bit 1001. The old status of 1001 shifts to 1002. The old status of 1002 shifts to 1003. And the new status of the data input (cone sensor) is transferred to bit 1000. The register now looks like:
	10xx Register

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	0
	1
	0
	1

Since the register shows that 1002 is now on the ladder says that output 0501 will turn on and peanuts are put on the cone. Since 1001 now holds the status of a broken cone, 500 remains off in the ladder above and no ice-cream is inserted into this cone. As the conveying system continues to move on, another cone comes in front of the sensor. This time it's also a good cone and the sensor turns on. Now the encoder generates another pulse. The old status of bit 1000 is transferred to bit 1001. The old status of 1001 shifts to 1002. The old status of 1002 shifts to 1003. And the new status of the data input (cone sensor) is transferred to bit 1000. The register now looks like:
	10xx Register

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	1
	0
	1
	1

Since the register shows that 1003 is now on the ladder says that output 0502 will turn on and sprinkles are put on the cone. (Its done, yummy...)Since 1002 now holds the status of a broken cone, 501 remains off in the ladder above and no peanuts are put onto this cone. Since the register shows that 1001 is now on the ladder says that output 0500 will turn on and ice cream is put in that cone.
As the conveying system continues to move on, another cone comes in front of the sensor. This time it's another broken cone and the sensor turns off. Now the encoder generates another pulse. The old status of bit 1000 is transferred to bit 1001. The old status of 1001 shifts to 1002. The old status of 1002 shifts to 1003. And the new status of the data input (cone sensor) is transferred to bit 1000. The register now looks like:
	10xx Register

	15
	14
	13
	12
	11
	10
	09
	08
	07
	06
	05
	04
	03
	02
	01
	00

	
	
	
	
	
	
	
	
	
	
	
	
	0
	1
	1
	0

Notice that the status of our first cone has disappeared. In reality its sitting in location 1004 but it's useless for us to draw an application with 16 processes here. Suffice it to say that after the bit is shifted all the way to the left it disappears and is never seen again. In other words, it has been shifted out of the register and is erased from memory. Although it's not drawn, the operation above would continue on with each bit shifting on the rising edge of the encoder signal.
Click here

and view the animation to really learn!
The shift register is most commonly used in conveyor systems, labeling or bottling applications, etc. Sometimes it's also conveniently used when the operation must be delayed in a fast moving bottling line. For example, a solenoid can't immediately kick out a bad can of beer when the sensor says its bad. By the time the solenoid would react the can would have already passed by. So typically the solenoid is located further down the conveyor line and a shift register tracks the can to be kicked out later when it's more convenient.
A shift register is often very difficult to understand. When in doubt, re-read the above and you'll understand it soon enough.
Getting and Moving Data
Let's now start working with some data. This is what can be considered to be getting into the "advanced" functions of a plc. This is also the point where we'll see some marked differences between many of the manufacturers functionality and implementation. On the lines that follow we'll explore two of the most popular ways to get and manipulate data.
Why do we want to get or acquire data? The answer is simple. Let's say that we are using one of the manufacturers optional modules. Perhaps it's an A/D module. This module acquires Analog signals from the outside world (a varying voltage or current) and converts the signal to something the plc can understand (a digital signal i.e. 1's and 0's). Manufacturers automatically store this data into memory locations for us. However, we have to get the data out of there and move it some place else otherwise the next analog sample will replace the one we just took. In other words, move it or lose it! Something else we might want to do is store a constant (i.e. fancy word for a number), get some binary data off the input terminals (maybe a thumbwheel switch is connected there, for example), do some math and store the result in a different location, etc...
As was stated before there are typically 2 common instruction "sets" to accomplish this. Some manufacturers use a single instruction to do the entire operation while others use two separate instructions. The two are used together to accomplish the final result. Let's now look briefly at each instruction.
The single instruction is commonly called MOV (move). Some vendors also include a MOVN (move not). It has the same function of MOV but it transfers the data in inverted form. (i.e. if the bit was a 1, a 0 is stored/moved or if the bit was a 0, a 1 is stored/moved). The MOV typically looks like that shown below.
[image: image60.png]MOV instruction symbol
The paired instruction typically is called LDA (LoaD Accumulator) and STA (STore Accumulator). The accumulator is simply a register inside the CPU where the plc stores data temporarily while its working. The LDA instruction typically looks like that shown below, while the STA instruction looks like that shown below to the right.
[image: image61.png]

 INCLUDEPICTURE "http://www.plcs.net/sta.gif" * MERGEFORMATINET [image: image62.png]
Regardless of whether we use the one symbol or two symbol instruction set (we have no choice as it depends on whose plc we use) they work the same way.
Let's see the single instruction first. The MOV instruction needs to know 2 things from us.
· Source (xxxx)- This is where the data we want to move is located. We could write a constant here (2222 for example). This would mean our source data is the number 2222. We could also write a location or address of where the data we want to move is located. If we wrote DM100 this would move the data that is located in data memory 100.
· Destination (yyyy)- This is the location where the data will be moved to. We write an address here. For example if we write DM201 here the data would be moved into data memory 201. We could also write 0500 here. This would mean that the data would be moved to the physical outputs. 0500 would have the least significant bit, 0501 would have the next bit... 0515 would have the most significant bit. This would be useful if we had a binary display connected to the outputs and we wanted to display the value inside a counter for the machine operator at all times (for example).
[image: image63.png]
The ladder diagram to do this would look similar to that shown above.
Notice that we are also using a "difu" instruction here. The reason is simply because if we didn't the data would be moved during each and every scan. Sometimes this is a good thing (for example if we are acquiring data from an A/D module) but other times it's not (for example an external display would be unreadable because the data changes too much).
The ladder shows that each time real world input 0000 becomes true, difu will become true for only one scan. At this time LoaD 1000 will be true and the plc will move the data from data memory 200 and put it into data memory 201.
Simple but effective. If, instead of DM200, we had written 2222 in the symbol we would have moved (written) the number (constant) 2222 into DM201.
The two symbol instruction works in the same method but looks different. To use them we must also supply two things, one for each instruction:
· LDA- this instruction is similar to the source of a MOV instruction. This is where the data we want to move is located. We could write a constant here (2222 for example). This would mean our source data is the number 2222. We could also write a location or address of where the data we want to move is located. If we wrote DM100 this would move the data that is located in data memory 100.
· STA- this instruction is similar to the destination of a MOV instruction. We write an address here. For example if we write DM201 here the data would be moved into data memory 201. We could also write 0500 here. This would mean that the data would be moved to the physical outputs. 0500 would have the least significant bit, 0501 would have the next bit... 0515 would have the most significant bit. This would be useful if we had a binary display connected to the outputs and we wanted to display the value inside a counter for the machine operator at all times (for example).
[image: image64.png]
The ladder diagram to do this would look similar to that shown above. Here again we notice that we are using a one-shot so that the move only occurs once for each time input 0000 becomes true. In this ladder we are moving the constant 2222 into data memory 200. The "#" is used by some manufactures to symbolize a decimal number. If we just used 2222 this plc would think it meant address 2222. PLCs are all the same... but they are all different.
Click here

and view the animation to really learn!
We can think of this instruction as the gateway to advanced instructions. I'm sure you'll find it useful and invaluable as we'll see in future. Many advanced functions are impossible without this instruction!
Math Instructions
Let's now look at using some basic math functions on our data. Many times in our applications we must execute some type of mathematical formula on our data. It's a rare occurrence when our data is actually exactly what we needed.
As an example, let's say we are manufacturing widgets. We don't want to display the total number we've made today, but rather we want to display how many more we need to make today to meet our quota. Lets say our quota for today is 1000 pieces. We'll say X is our current production. Therefore, we can figure that 1000-X=widgets left to make. To implement this formula we obviously need some math capability.
In general, PLCs almost always include these math functions:
· Addition- The capability to add one piece of data to another. It is commonly called ADD.
· Subtraction- The capability to subtract one piece of data from another. It is commonly called SUB.
· Multiplication- The capability to multiply one piece of data by another. It is commonly called MUL.
· Division- The capability to divide one piece of data from another. It is commonly called DIV.
As we saw with the MOV instruction there are generally two common methods used by the majority of plc makers. The first method includes a single instruction that asks us for a few key pieces of information. This method typically requires:
· Source A- This is the address of the first piece of data we will use in our formula. In other words it's the location in memory of where the first "number" is that we use in the formula.
· Source B- This is the address of the second piece of data we will use in our formula. In other words it's the location in memory of where the second "number" is that we use in the formula. -NOTE: typically we can only work with 2 pieces of data at a time. In other words we can't work directly with a formula like 1+2+3. We would have to break it up into pieces. Like 1+2=X then X+3= our result.
· Destination- This is the address where the result of our formula will be put. For example, if 1+2=3, (I hope it still does!), the 3 would automatically be put into this destination memory location.
[image: image66.png]ADD symbol
The instructions above typically have a symbol that looks like that shown above. Of course, the word ADD would be replaced by SUB, MUL, DIV, etc. In this symbol, The source A is DM100, the source B is DM101 and the destination is DM102. Therefore, the formula is simply whatever value is in DM100 + whatever value is in DM101. The result is automatically stored into DM102.
[image: image67.png]
Shown above is how to use math functions on a ladder diagram. Please note that once again we are using a one-shot instruction. As we've seen before, this is because if we didn't use it we would execute the formula on every scan. Odds are good that we'd only want to execute the function one time when input 0000 becomes true. If we had previously put the number 100 into DM100 and 200 into DM101, the number 300 would be stored in DM102.(i.e. 100+200=300, right??)
[image: image68.png]ADD symbol (dual method)
The dual instruction method would use a symbol similar to that shown above. In this method, we give this symbol only the Source B location. The Source A location is given by the LDA instruction. The Destination would be included in the STA instruction.
[image: image69.png]
Shown above is a ladder diagram showing what we mean.
The results are the same as the single instruction method shown above.
Click here

and view the animation to really learn!
What would happen if we had a result that was greater than the value that could be stored in a memory location?
Typically the memory locations are 16-bit locations. (more about number types in a later chapter) In plain words this means that if the number is greater than 65535 (2^16=65536) it is too big to fit. Then we get what's called an overflow. Typically the plc turns on an internal relay that tells us an overflow has happened. Depending on the plc, we would have different data in the destination location. (DM102 from example) Most PLCs put the remainder here.
Some use 32-bit math which solves the problem. (except for really big numbers!) If we're doing division, for example, and we divide by zero (illegal) the overflow bit typically turns on as well. Suffice it to say, check the overflow bit in your ladder and if its true, plan appropriately.
Many PLCs also include other math capabilities. Some of these functions could include:
· Square roots
· Scaling
· Absolute value
· Sine
· Cosine
· Tangent
· Natural logarithm
· Base 10 logarithm
· X^Y (X to the power of Y)
· Arcsine (tan, cos)
· and more....check with the manufacturer to be sure.
Some PLCs can use floating point math as well. Floating point math is simply using decimal points. In other words, we could say that 10 divided by 3 is 3.333333 (floating point). Or we could say that 10 divided by 3 is 3 with a remainder of 1(long division). Many micro/mini PLCs don't include floating point math. Most larger systems typically do.
Understand the theory and we can always learn how our manufacturer of choice does it.
Number Systems
Before we get too far ahead of ourselves, let's take a look at the various number systems used by PLCs.
Many number systems are used by PLCs. Binary and Binary Coded Decimal are popular while octal and hexadecimal systems are also common.
Let's look at each:
As we do, consider the following formula (Math again!):
Nbase= Ddigit * R^unit + D1R^1 + D0R^0
where D=the value of the digit and R= # of digit symbols used in the given number system.
The "*" means multiplication. (5 * 10 = 50)
The "^" means "to the power of".
As you'll recall any number raised to the power of 0 is 1. 10^1=10, 10^2 is 10x10=100, 10^3 is 10x10x10=1000, 10^4 is 10x10x10x10=10000...
This lets us convert from any number system back into decimal. Huh? Read on...
· Decimal- This is the numbering system we use in everyday life. (well most of us do anyway!) We can think of this as base 10 counting. It can be called as base 10 because each digit can have 10 different states. (i.e. 0-9) Since this is not easy to implement in an electronic system it is seldom, if ever, used. If we use the formula above we can find out what the number 456 is. From the formula:
Nbase= Ddigit * R^unit + D1R^1 + D0R^0
we have (since we're doing base 10, R=10)
 N10= D410^2 + D510^1 + D610^0

 = 4*100 + 5*10 + 6*

 = 400 + 50 + 6

 = 456.
· Binary- This is the numbering system computers and PLCs use. It was far easier to design a system in which only 2 numbers (0 and 1) are manipulated (i.e. used).
The binary system uses the same basic principles as the decimal system. In decimal we had 10 digits. (0-9) In binary we only have 2 digits (0 and 1). In decimal we count: 0,1,2,3,4,5,6,7,8,9, and instead of going back to zero, we start a new digit and then start from 0 in the original digit location.
In other words, we start by placing a 1 in the second digit location and begin counting again in the original location like this 10,11,12,13, ... When again we hit 9, we increment the second digit and start counting from 0 again in the original digit location. Like 20,21,22,23.... of course this keeps repeating. And when we run out of digits in the second digit location we create a third digit and again start from scratch.(i.e. 99, 100, 101, 102...)
Binary works the same way. We start with 0 then 1. Since there is no 2 in binary we must create a new digit.
Therefore we have 0, 1, 10, 11 and again we run out of room. Then we create another digit like 100, 101, 110, 111. Again we ran out of room so we add another digit... Do you get the idea?
The general conversion formula may clear things up:
Nbase= Ddigit * R^unit + D1R^1 + D0R^0.
Since we're now doing binary or base 2, R=2. Let's try to convert the binary number 1101 back into decimal.
 N10= D1 * 2^3 + D1 * 2^2 + D0 * 2^1 + D1 * 2^0

 = 1*8 + 1*4 + 0*2 + 1*1

 = 8 + 4 +0 +1

 = 13
(if you don't see where the 8,4,2, and 1 came from, refer

 to the table below).
Now we can see that binary 1101 is the same as decimal 13. Try translating binary 111. You should get decimal 7. Try binary 10111. You should get decimal 23.
Here's a simple binary chart for reference. The top row shows powers of 2 while the bottom row shows their equivalent decimal value.
	Binary Number Conversions

	2^15
	2^14
	2^13
	2^12
	2^11
	2^10
	2^9
	2^8
	2^7
	2^6
	2^5
	2^4
	2^3
	2^2
	2^1
	2^0

	32768
	16384
	8192
	4096
	2048
	1024
	512
	256
	128
	64
	32
	16
	8
	4
	2
	1

· Octal- The binary number system requires a ton of digits to represent a large number. Consider that binary 11111111 is only decimal 257. A decimal number like 1,000,000 ("1 million") would need a lot of binary digits! Plus it's also hard for humans to manipulate such numbers without making mistakes.
Therefore several computer/plc manufacturers started to implement the octal number system.
This system can be thought of as base8 since it consists of 8 digits. (0,1,2,3,4,5,6,7)
So we count like 0,1,2,3,4,5,6,7,10,11,12...17,20,21,22...27,30,...
Using the formula again, we can convert an octal number to decimal quite easily.
Nbase= Ddigit * R^unit + D1R^1 + D0R^0
So octal 654 would be: (remember that here R=8)
 N10= D6 * 8^2 + D5 * 8^1 + D4 * 8^0

 = 6*64 + 5*8 + 4*1

 = 384 +40 +4

 = 428
(if you don't see where the white 64,8 and 1 came from,

 refer to the table below).
Now we can see that octal 321 is the same as decimal 209. Try translating octal 76. You should get decimal 62. Try octal 100. You should get decimal 64.
Here's a simple octal chart for your reference. The top row shows powers of 8 while the bottom row shows their equivalent decimal value.
	Octal Number Conversions

	8^7
	8^6
	8^5
	8^4
	8^3
	8^2
	8^1
	8^0

	2097152
	262144
	32768
	4096
	512
	64
	8
	1

Lastly, the octal system is a convenient way for us to express or write binary numbers in plc systems. A binary number with a large number of digits can be conveniently written in an octal form with fewer digits. This is because 1 octal digit actually represents 3 binary digits.
Believe me that when we start working with register data or address locations in the advanced chapters it becomes a great way of expressing data. The following chart shows what we're referring to:
	Binary Number with its Octal Equivalent

	1
	1
	1
	0
	0
	1
	0
	0
	1
	1
	1
	0
	0
	1
	0
	1

	1
	6
	2
	3
	4
	5

From the chart we can see that binary 1110010011100101 is octal 162345. (decimal 58597) As we can see, when we think of registers, it's easier to think in octal than in binary. As you'll soon see though, hexadecimal is the best way to think. (really)
· Hexadecimal-The binary number system requires a ton of digits to represent a large number. The octal system improves upon this. The hexadecimal system is the best solution however, because it allows us to use even less digits. It is therefore the most popular number system used with computers and PLCs. (we should learn each one though)
The hexadecimal system is also referred to as base 16 or just simply hex. As the name base 16 implies, it has 16 digits. The digits are
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
So we count like
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,...
1A,1B,1C,1D,1E,1F,20,21... 2A,2B,2C,2D,2E,2F,30...
Using the formula again, we can convert a hex number to decimal quite easily.
Nbase= Ddigit * R^unit + D1R^1 + D0R^0
So hex 6A4 would be:(remember here that R=16)
 N10= D6 * 16^2 + DA * 16^1 + D4 * 16^0

 = 6*256 + A(A=decimal10)*16 + 4*1

 = 1536 +160 +4

 = 1700
(if you don't see where the 256,16 and 1 came from,

 refer to the table below)
Now we can see that hex FFF is the same as decimal 4095. Try translating hex 76. You should get decimal 118. Try hex 100. You should get decimal 256.
Here's a simple hex chart for reference. The top row shows powers of 16 while the bottom row shows their equivalent decimal value. Notice that the numbers get large rather quickly!
	Hex Number Conversions

	16^8
	16^7
	16^6
	16^5
	16^4
	16^3
	16^2
	16^1
	16^0

	4294967296
	268435456
	16777216
	1048576
	65536
	4096
	256
	16
	1

Finally, the hex system is perhaps the most convenient way for us to express or write binary numbers in plc systems. A binary number with a large number of digits can be conveniently written in hex form with fewer digits than octal. This is because 1 hex digit actually represents 4 binary digits.
Believe me that when we start working with register data or address locations in the advanced chapters it becomes the best way of expressing data. The following chart shows what we're referring to:
	Binary Number with its Hex Equivalent

	0
	1
	1
	1
	0
	1
	0
	0
	1
	0
	1
	0
	0
	1
	0
	1

	7
	4
	A
	5

From the chart we can see that binary 0111010010100101 is hex 74A5. (decimal 29861) As we can see, when we think of registers, it's far easier to think in hex than in binary or octal.
4 digits go a long way after some practice!
Boolean Math
Let's now take a look at some simple "boolean math". Boolean math lets us do some vary basic functions with the bits in our registers. These basic functions typically include AND, OR and XOR functions. Each is described below.
· AND- This function enables us to use the truth table below. Here, we can see that the AND function is very much related to multiplication. We see this because the only time the Result is true (i.e. 1) is when both operators A AND B are true (i.e. 1).
The AND instruction is useful when your plc doesn't have a masking function. Oh yeah, a masking function enables a bit in a register to be "left alone" when working on a bit level. This is simply because any bit that is ANDed with itself will remain the value it currently is. For example, if you wanted to clear (make them 0) only 12 bits in a 16 bit register you might AND the register with 0's everywhere except in the 4 bits you wanted to maintain the status of.
See the truth table below to figure out what we mean. (1 AND 1 = 1, 0 AND 0= 0)
	Result = A AND B

	A
	B
	Result

	0
	0
	0

	1
	0
	0

	0
	1
	0

	1
	1
	1

· OR- This functions based upon the truth table below. Here, we can see that the OR function is very much related to addition. We see this because the only time the Result is true (i.e. 1) is when operator A OR B is true (i.e. 1). Obviously, when they are both true the result is true. (If A OR B is true...)
	Result = A OR B

	A
	B
	Result

	0
	0
	0

	1
	0
	1

	0
	1
	1

	1
	1
	1

· EXOR- This function enables us to use the truth table below. Here, we can see that the EXOR (XOR) function is not related to anything I can think of ! An easy way to remember the results of this function is to think that A and B must be one or the other case, exclusively. Huh?
In other words, they must be opposites of each other. When they are both the same (i.e. A=B) the result is false (i.e. 0).
This is sometimes useful when you want to compare bits in 2 registers and highlight which bits are different. It's also needed when we calculate some checksums. A checksum is commonly used as error checking in some communications protocols.
	Result = A XOR B

	A
	B
	Result

	0
	0
	0

	1
	0
	1

	0
	1
	1

	1
	1
	0

The ladder logic instructions are commonly called AND, ANDA, ANDW, OR, ORA, ORW, XOR, EORA XORW.
As we saw with the MOV instruction there are generally two common methods used by the majority of plc makers. The first method includes a single instruction that asks us for a few key pieces of information. This method typically requires:
· Source A- This is the address of the first piece of data we will use. In other words its the location in memory of where the A is.
· Source B- This is the address of the second piece of data we will use. In other words its the location in memory of where the B is.
· Destination- This is the address where the result will be put. For example, if A AND B = 0 the result (0) would automatically be put into this destination memory location.
[image: image71.png]AND symbol
The instructions above typically have a symbol that looks like that shown here. Of course, the word AND would be replaced by OR or XOR. In this symbol, The source A is DM100, the source B is DM101 and the destination is DM102. Therefore, we have simply created the equation DM100 AND DM101 = DM102. The result is automatically stored into DM102.
The boolean functions on a ladder diagram are shown below.
[image: image72.png]
Please note that once again we are using a one-shot instruction. As we've seen before, this is because if we didn't use it, we would execute the instruction on every scan. Odds are good that we'd only want to execute the function one time when input 0000 becomes true.
[image: image73.png]AND symbol (dual instruction method)
The dual instruction method would use a symbol similar to that shown above. In this method, we give this symbol only the Source B location. The Source A location is given by the LDA instruction. The Destination would be included in the STA instruction.
Below is a ladder diagram showing what is meant:
[image: image74.png]
The results are the same as the single instruction method shown above. It should be noted that although the symbol and ladder diagram above show the AND instruction, OR or EXOR can be used as well. Simply substitute the word "AND" within the instruction to be either "OR" or "EXOR". The results will be the same as shown in their respective truth tables.
We should always remember that the theory is most important. If we can understand the theory of why things happen as they do, we can use anybody's plc. If we refer to the manufacturers documentation we can find out the details for the particular plc we are using. Try to find the theory in that documentation and you might come up short. The details are insignificant while the theory is very significant.
	DC Inputs
Let's now take a look at how the input circuits of a plc work. This will give us a better understanding of how we should wire them up. Bad things can happen if we wire them up incorrectly!
Typically, dc input modules are available that will work with 5, 12, 24, and 48 volts. Be sure to purchase the one that fits your needs based upon the input devices you will use.
We'll first look at how the dc inputs work. DC input modules allow us to connect either PNP (sourcing) or NPN (sinking) transistor type devices to them. If we are using a regular switch (i.e. toggle or pushbutton, etc.) we typically don't have to worry about whether we wire it as NPN or PNP. We should note that most PLCs won't let us mix NPN and PNP devices on the same module. When we are using a sensor (photo-eye, prox, etc.) we do, however, have to worry about its output configuration. Always verify whether it's PNP or NPN. (Check with the manufacturer when unsure)
The difference between the two types is whether the load (in our case, the plc is the load) is switched to ground or positive voltage. An NPN type sensor has the load switched to ground whereas a PNP device has the load switched to positive voltage.
Below is what the outputs look like for NPN and PNP sensors.
[image: image75.png]
On the NPN sensor we connect one output to the PLCs input and the other output to the power supply ground. If the sensor is not powered from the same supply as the plc, we should connect both grounds together. NPN sensors are most commonly used in North America.
Many engineers will say that PNP is better (i.e. safer) because the load is switched to ground, but whatever works for you is best. Just remember to plan for the worst.
On the PNP sensor we connect one output to positive voltage and the other output to the PLCs input. If the sensor is not powered from the same supply as the plc, we should connect both V+'s together. PNP sensors are most commonly used in Europe.
[image: image76.png]
Inside the sensor, the transistor is just acting as a switch. The sensors internal circuit tells the output transistor to turn on when a target is present. The transistor then closes the circuit between the 2 connections shown above. (V+ and plc input).
[image: image77.png]
The only things accessible to the user are the terminals labeled COMMON, INPUT 0000, INPUT 0001, INPUTxxxx... The common terminal either gets connected to V+ or ground. Where it's connected depends upon the type of sensor used. When using an NPN sensor this terminal is connected to V+. When using a PNP sensor this terminal is connected to 0V (ground).
A common switch (i.e. limit switch, pushbutton, toggle, etc.) would be connected to the inputs in a similar fashion. One side of the switch would be connected directly to V+. The other end goes to the plc input terminal. This assumes the common terminal is connected to 0V (ground). If the common is connected to V+ then simply connect one end of the switch to 0V (ground) and the other end to the plc input terminal.
The photocouplers are used to isolate the PLCs internal circuit from the inputs. This eliminates the chance of any electrical noise entering the internal circuitry. They work by converting the electrical input signal to light and then by converting the light back to an electrical signal to be processed by the internal circuit.

	

	

	AC Inputs
Now that we understand how dc inputs work, let's take a close look at ac inputs. An ac voltage is non-polarized. Put simply, this means that there is no positive or negative to "worry about". However, ac voltage can be quite dangerous to work with if we are careless. (Remember when you stuck the knife in the toaster and got a shock? Be careful) Typically, ac input modules are available that will work with 24, 48, 110, and 220 volts. Be sure to purchase the one that fits your needs based upon the input devices (voltage) you will use.
[image: image78.png]OUCH... use care!!
AC input modules are less common these days than dc input modules. The reason being that today's sensors typically have transistor outputs. A transistor will not work with an ac voltage. Most commonly, the ac voltage is being switched through a limit switch or other switch type. If your application is using a sensor it probably is operating on a dc voltage.
[image: image79.png]
We typically connect an ac device to our input module as shown above. Commonly the ac "hot" wire is connected to the switch while the "neutral" goes to the plc common. The ac ground (3rd wire where applicable) should be connected to the frame ground terminal of the plc.(not shown) As is true with dc, ac connections are typically color coded so that the individual wiring the device knows which wire is which. This coding varies from country to country but in the US is commonly white (neutral), black (hot) and green (3rd wire ground when applicable). Outside the US it's commonly coded as brown (hot), blue (neutral) and green with a yellow stripe (3rd wire ground where applicable).
The PLCs ac input module circuit typically looks like this:
[image: image80.png]
The only things accessible to the user are the terminals labeled COMMON, INPUT 0000, INPUTxxxx... The common terminal gets connected to the neutral wire.
A common switch (i.e. limit switch, pushbutton, toggle, etc.) would be connected to the input terminals directly. One side of the switch would be connected directly to INPUT XXX. The other end goes to the ac hot wire. This assumes the common terminal is connected to neutral. Always check the manufacturers specifications before wiring, to be sure AND SAFE.
The photocouplers are used to isolate the PLCs internal circuit from the inputs. This eliminates the chance of any electrical noise entering the internal circuitry. They work by converting the electrical input signal to light and then by converting the light back to an electrical signal to be processed by the internal circuit.
One last note, typically an ac input takes longer than a dc input for the plc to see. In most cases it doesn't matter to the programmer because an ac input device is typically a mechanical switch and mechanical devices are slowwwwww. It's quite common for a plc to require that the input be on for 25 or more milliseconds before it's seen. This delay is required because of the filtering which is needed by the plc internal circuit. Remember that the plc internal circuit typically works with 5 or less volts dc.

	

	

Relay Outputs
By now we should have a good understanding of how the inputs are used. Next up is the output circuits.
One of the most common types of outputs available is the relay output. A relay can be used with both AC and DC loads. A load is simply a fancy word for whatever is connected to our outputs. We call it a load because we are "loading the output" with something. If we connected no load to the output (i.e. just connect it directly to a power supply) we would certainly damage the outputs. This would be similar to replacing the lightbulb in the lamp you're using to read this with a piece of wire. If you did this, the lamp would draw a tremendous amount of current from the outlet and certainly pop your circuit breaker or blow your fuse or your brains. (Take our word. Please don't try it! Extremely dangerous!)
Some common forms of a load are a solenoid, lamp, motor, etc. These "loads" come in all sizes. Electrical sizes, that is. Always check the specifications of your load before connecting it to the plc output. You always want to make sure that the maximum current it will consume is within the specifications of the plc output. If it is not within the specifications (i.e. draws too much current) it will probably damage the output. When in doubt, double check with the manufacturer to see if it can be connected without potential damage.
Some types of loads are very deceiving. These deceiving loads are called "inductive loads". These have a tendency to deliver a "back current" when they turn on. This back current is like a voltage spike coming through the system.
A good example of an inductive load that most of us see about 6 months per year is an air conditioning unit. Perhaps in your home you have an air conditioner. (unless you live in the arctic you probably do!) Have you ever noticed that when the air conditioner "kicks on" the lights dim for a second or two. Then they return to their normal brightness. This is because when the air conditioner turns on it tries to draw a lot of current through your wiring system. After this initial "kick" it requires less current and the lights go back to normal. This could be dangerous to your PLCs output relays. It can be estimated that this kick is about 30 times the rated current of the load. Typically a diode, varistor, or other "snubber" circuit should be used to help combat any damage to the relay. Enough said. Let's see how we can use these outputs in the "real plc world".
[image: image81.png]
Shown above is a typical method of connecting our outputs to the plc relays. Although our diagram shows the output connected to an AC supply, DC can be used as well. A relay is non-polarized and typically it can switch either AC or DC. Here the common is connected to one end of our power supply and the other end of the supply is connected to the load. The other half of our load gets connected to the actual plc output you have designated within your ladder program.
[image: image82.png]
The relay is internal to the plc. Its circuit diagram typically looks like that shown above. When our ladder diagram tells the output to turn on, the plc will internally apply a voltage to the relay coil. This voltage will allow the proper contact to close. When the contact closes, an external current is allowed to flow through our external circuit. When the ladder diagram tells the plc to turn off the output, it will simply remove the voltage from the internal circuit thereby enabling the output contact to release. Our load will than have an open circuit and will therefore be off. Simple, isn't it?
Transistor Outputs
The next type of output we should learn about is our transistor type outputs. It is important to note that a transistor can only switch a dc current. For this reason it cannot be used with an AC voltage.
We can think of a transistor as a solid-state switch. Or more simply put, an electrical switch. A small current applied to the transistors "base" (i.e. input) lets us switch a much larger current through its output. The plc applies a small current to the transistor base and the transistor output "closes". When it's closed, the device connected to the plc output will be turned on. The above is a very simple explanation of a transistor. There are, of course, more details involved but we don't need to get too deep.
We should also keep in mind that as we saw before with the input circuits, there are generally more than one type of transistor available. Typically a plc will have either NPN or PNP type outputs. The "physical" type of transistor used also varies from manufacturer to manufacturer. Some of the common types available are BJT and MOSFET. A BJT type (Bipolar Junction Transistor) often has less switching capacity (i.e. it can switch less current) than a MOS-FET (Metal Oxide Semiconductor- Field Effect Transistor) type. The BJT also has a slightly faster switching time. Once again, please check the output specifications of the particular plc you are going to use. Never exceed the manufacturers maximum switching current.
[image: image83.png]
Shown above is how we typically connect our output device to the transistor output. Please note that this is an NPN type transistor. If it were a PNP type, the common terminal would most likely be connected to V+ and V- would connect to one end of our load. Note that since this is a DC type output we must always observe proper polarity for the output. One end of the load is connected directly to V+ as shown above.
Let's take a moment and see what happens inside the output circuit. Shown below is a typical output circuit diagram for an NPN type output.
[image: image84.png]
Notice that as we saw with the transistor type inputs, there is a photocoupler isolating the "real world" from the internal circuit. When the ladder diagram calls for it, the internal circuit turns on the photocoupler by applying a small voltage to the LED side of the photocoupler. This makes the LED emit light and the receiving part of the photocoupler will see it and allow current to flow. This small current will turn on the base of the output transistor connected to output 0500. Therefore, whatever is connected between COM and 0500 will turn on. When the ladder tells 0500 to turn off, the LED will stop emitting light and hence the output transistor connected between 0500 and COM will turn off.
One other important thing to note is that a transistor typically cannot switch as large a load as a relay. Check the manufacturers specifications to find the largest load it can safely switch. If the load current you need to switch exceeds the specification of the output, you can connect the plc output to an external relay. Then connect the relay to the large load. You may be thinking, "why not just use a relay in the first place"? The answer is because a relay is not always the correct choice for every output. A transistor gives you the opportunity to use external relays when and only when necessary.
In summary, a transistor is fast, switches a small current, has a long lifetime and works with dc only. Whereas a relay is slow, can switch a large current, has a shorter lifetime and works with ac or dc. Select the appropriate one based upon your actual application needs.
Communications History
By far, the most popular method of communicating with external devices is by using the "RS-232" communications method. Communication with external devices is viewed by many plc programmers to be difficult if not "all but impossible" to understand. This is far from true! It's not "black art", "witchcraft" or "weird science". Read on...
All plc communication systems have their roots in the old telegraph we may have seen in the old movies. (Remember the guy working at the train station with the arm band and plastic visor?) Early attempts to communicate electronically over long distances began as early as the late 1700's. In 1810 a German man (von Soemmering) was using a device with 26 wires (1 for each letter of the alphabet) attached to the bottom of an aquarium. When current passed through the wires, electrolytic action produced small bubbles. By choosing the appropriate wires to energize, he was able to send encoded messages "via bubbles". (It's true...really) This then caught the attention of the military and the race to find a system was on.
In 1839, 2 Englishmen, Cooke and Wheatstone, had a 13 mile telegraph in use by a British railroad. Their device had 5 wires powering small electromagnets which deflected low-mass needles. By applying current to different combinations of 2 wires at a time the needles were deflected so that they pointed to letters of the alphabet arranged in a matrix. This "2 of 5" code only allowed 20 combinations so the letters "z,v,u,q,j and c" were omitted. This telegraph was a big step for the time, but the code was not binary (on/off) but rather it was trinary (the needle moved left,right,or not at all).
[image: image85.png]
The biggest problems with these devices was the fact that they were parallel (required multiple wires). Cooke and Wheatstone eventually made a two wire device but the first practical fully serial binary system generally gets credited to S.F.B. Morse. In Morse code, characters are symbolized by dots and dashes(binary- 1's and 0's). Morse's first system isn't like we see today in the movies. (It's on display at the Smithsonian in DC if you want to see it) It actually had a needle contacting a rotating drum of paper that made a continuous mark. By energizing an electromagnet the needle would "bounce" away from the paper creating a space. Very soon telegraph operators noticed that they didn't have to look at the paper to read the code but they could interpret the code by the sound the needle made when scratching the paper. So this device was replaced by a sounder that produced click sounds instead of paper etchings. Teleprinters came later, and todays serial communications devices are more closely related to them. The rest is history... extinct, but history anyway!
Incidentally, the terms MARK and SPACE (we'll see them later) originated from Morse's original device. When the needle contacted the paper we called this a MARK and when the needle bounced it was called a SPACE. His device only produced UPPERCASE letters which wasn't a big problem though. Further, the Titanic sinking "standardized" the code of "SOS" which means "Save Our Ship" or if you were ever in the US military you might know it better as "S*%$ On a Shingle" which was chipped beef on bread.
RS-232 Communications (hardware)
RS-232 communications is the most popular method of plc to external device communications. Let's tackle it piece by piece to see how simple it can be when we understand it.
RS-232 is an asynchronous (a marching band must be "in sync" with each other so that when one steps they all step. They are asynchronous in that they follow the band leader to keep their timing) communications method. We use a binary system (1's and 0's) to transmit our data in the ASCII format. (American Standard Code for Information Interchange- pronounced ASS-KEY) This code translates human readable code (letters/numbers) into "computer readable" code (1's and 0's). Our plcs serial port is used for transmission/reception of the data. It works by sending/receiving a voltage. A positive voltage is called a MARK and a negative voltage is called a SPACE. Typically, the plc works with +/- 15volts. The voltage between +/- 3 volts is generally not used and is considered noise.
There are 2 types of RS-232 devices. The first is called a DTE device. This means Data Terminal Equipment and a common example is a computer. The other type is called a DCE device. DCE means Data Communications Equipment and a common example is a modem. Your plc may be either a DTE or DCE device. Check your documentation.
The plc serial port works by turning some pins on while turning other off. These pins each are dedicated to a specific purpose. The serial port comes in 2 flavors-- a 25-pin type and a 9-pin type. The pins and their purposes are shown below. (This chart assumes your plc is a DTE device)
	9-PIN
	25-PIN
	PURPOSE

	1
	1
	frame ground

	2
	3
	receive data (RD)

	3
	2
	transmit data (TD)

	4
	20
	data terminal ready (DTR)

	5
	7
	signal ground

	6
	6
	data set ready (DSR)

	7
	4
	request to send (RTS)

	8
	5
	clear to send (CTS)

	9
	22
	ring indicator (RI) *only for modems*

Each pins purpose in detail:
· frame ground- This pin should be internally connected to the chassis of the device.
· receive data- This pin is where the data from the external device enters the plc serial port.
· transmit data- This pin is where the data from the plc serial port leaves the plc enroute to the external device.
· data terminal ready- This pin is a master control for the external device. When this pin is 1 the external device will not transmit or receive data.
· signal ground- Since data is sent as + or - voltage, this pin is the ground that is referenced.
· data set ready- Usually external devices have this pin as a permanent 0 and the plc basically uses it to determine that the external device is powered up and ready.
· request to send- This is part of hardware handshaking. When the plc wants to send data to the external device it sets this pin to a 0. In other words, it sets the pin to a 0 and basically says "I want to send you data. Is it ok?" The external device says it's OK to send data by setting its clear to send pin to 0. The plc then sends the data.
· clear to send- This is the other half of hardware handshaking. As noted above, the external device sets this pin to 0 when it is ready to receive data from the plc.
· ring indicator- only used when the plc is connected to a modem.
What happens when your plc and external device are both DTE (or both DCE) devices? They can't talk to each other, that's what happens. The picture below shows why 2 same type devices can't communicate with each other.
[image: image86.png]
Notice that in the picture above, the receive data line (pin2) of the first device is connected to the receive data line of the second device. And the transmit data line (pin3) of the first device is connected to the transmit data of the second device. It's like talking through a phone with the wires reversed. (i.e. your mouth piece is connected directly to the other parties mouthpiece and your ear piece is connected directly to the other parties earpiece.) Obviously, this won't work well!
The solution is to use a null-modem connection as shown below. This is typically done by using a reverse (null-modem) cable to connect the devices.
[image: image87.png]
To summarize everything, here's a typical communications session. Both devices are powered up. The plc is DTE and the external device is DCE.
The external device turns on DSR which tells the plc that's it's powered up and "there". The PLC turns on RTS which is like asking the external device "are you ready to receive some data?" The external device responds by turning on it's CTS which says it's ok to for the plc to send data. The plc sends the data on its TD terminal and the external device receives it on its RD terminal. Some data is sent and received. After a while, the external device can't process the data quick enough. So, it turns off its CTS terminal and the plc pauses sending data. The external device catches up and then turns its CTS terminal back on. The plc again starts sending data on its TD terminal and the external device receives it on its RD terminal. The plc runs out of data to send and turns off its RTS terminal. The external device sits and waits for more data.
RS-232 Communications (software)
Now that we understand the hardware part of the picture, let's dive right into the software part. We'll take a look at each part of the puzzle by defining a few of the common terms. Ever wondered what phrases like 9600-8-N-1 meant?
Do you use software-handshaking or hardware-handshaking at formal parties for a greeting? If you're not sure, read on!
· ASCII is a human-readable to computer-readable translation code. (i.e. each letter/number is translated to 1's and 0's) It's a 7-bit (a bit is a 1 or a 0) code, so we can translate 128 characters. (2^7 is 128) Character sets that use the 8th bit do exist but they are not true ASCII. Below is an ASCII chart showing its "human-readable" representation. We typically refer to the characters by using hexadecimal terminology. "0" is 30h, "5" is 35h, "E" is 45h, etc. (the "h" simple means hexadecimal)

	
	most significant bits

	least
sig.
bits
	
	0
	1
	2
	3
	4
	5
	6
	7

	
	0
	
	
	space
	0
	@
	P
	`
	p

	
	1
	
	XON
	!
	1
	A
	Q
	a
	q

	
	2
	STX
	
	"
	2
	B
	R
	b
	r

	
	3
	ETX
	XOFF
	#
	3
	C
	S
	c
	s

	
	4
	
	
	$
	4
	D
	T
	d
	t

	
	5
	
	NAK
	%
	5
	E
	U
	e
	u

	
	6
	ACK
	
	&
	6
	F
	V
	f
	v

	
	7
	
	
	'
	7
	G
	W
	g
	w

	
	8
	
	
	(
	8
	H
	X
	h
	x

	
	9
	
	
)
	9
	I
	Y
	i
	y

	
	A
	LF
	
	*
	:
	J
	Z
	j
	z

	
	B
	
	
	+
	;
	K
	[
	k
	{

	
	C
	
	
	,
	<
	L
	\
	l
	|

	
	D
	CR
	
	-
	=
	M
]
	m
	}

	
	E
	
	
	.
	>
	N
	^
	n
	~

	
	F
	
	
	/
	?
	O
	_
	o
	

· start bit- In RS-232 the first thing we send is called a start bit. This start bit ("invented" during WW1 by Kleinschmidt) is a synchronizing bit added just before each character we are sending. This is considered a SPACE or negative voltage or a 0.
· stop bit- The last thing we send is called a stop bit. This stop bit tells us that the last character was just sent. Think of it as an end-of -character bit. This is considered a MARK or positive voltage or a 1. The start and stop bits are commonly called framing bits because they surround the character we are sending.
· parity bit- Since most plcs/external equipment are byte-oriented (8 bits=1byte) it seems natural to handle data as a byte. Although ASCII is a 7-bit code it is rarely transmitted that way. Typically, the 8th bit is used as a parity bit for error checking. This method of error checking gets its name from the math idea of parity. (remember the odd-even property of integers? I didn't think so.) In simple terms, parity means that all characters will either have an odd number of 1's or an even number of 1's.
Common forms of parity are None, Even, and Odd. (Mark and Space aren't very common so I won't discuss them). Consider these examples:
send "E" (45h or 1000101b(inary))
In parity of None, the parity bit is always 0 so we send 10001010.
In parity of Even we must have an Even number of 1's in our total character so the original character currently has 3 1's (1000101) therefore our parity bit we will add must be a 1. (10001011) Now we have an even number of 1's.
In Odd parity we need an odd number of 1's. Since our original character already has an odd number of 1's (3 is an odd number, right?) our parity bit will be a 0. (10001010)
During transmission, the sender calculates the parity bit and sends it. The receiver calculates parity for the 7-bit character and compares the result to the parity bit received. If the calculated and real parity bits don't match, an error occurred an we act appropriately.
It's strange that this parity method is so popular. The reason is because it's only effective half the time. That is, parity checking can only find errors that effect an odd number of bits. If the error affected 2 or 4 or 6 bits the method is useless. Typically, errors are caused by noise which comes in bursts and rarely effects 1 bit. Block redundancy checks are used in other communication methods to prevent this.
· Baud rate- I'll perpetuate the incorrect meaning since it's most commonly used incorrectly. Think of baud rate as referring to the number of bits per second that are being transmitted. So 1200 means 1200 bits per second are being sent and 9600 means 9600 bits are being transmitted every second. Common values (speeds) are 1200, 2400, 4800, 9600, 19200, and 38400.
· RS232 data format- (baud rate-data bits-parity-stop bits) This is the way the data format is typically specified. For example, 9600-8-N-1 means a baud rate of 9600, 8 data bits, parity of None, and 1 stop bit.
The picture below shows how data leaves the serial port for the character "E" (45h 100 0101b) and Even parity.
[image: image88.png]
Another important thing that is sometimes used is called software handshaking (flow control). Like the hardware handshaking we saw in the previous chapter, software handshaking is used to make sure both devices are ready to send/receive data. The most popular "character flow control" is called XON/XOFF. It's very simple to understand. Simply put, the receiver sends the XOFF character when it wants the transmitter to pause sending data. When it's ready to receive data again, it sends the transmitter the XON character. XOFF is sometimes referred to as the holdoff character and XON as the release character.
The last thing we should know about is delimiters. A delimiter is simply added to the end of a message to tell the receiver to process the data it has received. The most common is the CR or the CR and LF pair. The CR (carriage return) is like the old typewriters. (remember them??) When you reached the end of a line while typing, a bell would sound. You would then grab the handle and move the carriage back to the start. In other words, you returned the carriage to the beginning. (This is the same as what a CR delimiter will do if you view it on a computer screen.) The plc/external device receives this and knows to take the data from its buffer. (where the data is stored temporarily before being processed) An LF (line feed) is also sometimes sent with the CR character. If viewed on a computer screen this would look like what happens on the typewriter when the carriage is returned and the page moves down a line so you don't type over what you just typed.
Sometimes an STX and ETX pair is used for transmission/reception as well. STX is "start of text" and ETX is "end of text". The STX is sent before the data and tells the external device that data is coming. After all the data has been sent, an ETX character is sent.
Finally, we might also come across an ACK/NAK pair. This is rarely used but it should be noted as well. Essentially, the transmitter sends its data. If the receiver gets it without error, it sends back an ACK character. If there was an error, the receiver sends back a NAK character and the transmitter resends the data.
RS-232 has a lot of information to absorb, so feel free to reread it. It's not so difficult if you take your time and think about each step. Other communication methods get easier!
	Using RS-232 with Ladder Logic
Now that we understand what RS-232 is/means let's see how to use it with our plc.
We should start out as always, remembering that a plc is a plc is a plc... In other words, understand the theory first and then figure out how our manufacturer of choice "makes it work". Some manufacturers include RS-232 communication capability in the main processor. Some use the "programming port" for this. Others require you to purchase (i.e. spend extra $'s) a module to "talk RS-232" with an external device.
What is an external device, you maybe asking? The answer is difficult because there are so many external devices. It may be an operator interface, an external computer, a motor controller, a robot, a vision system, a ... get the point??
To communicate via RS-232 we have to setup a few things. Ask yourself the following questions:
· Where, in data memory, will we store the data to be sent? Essentially we have to store the data we will send... somewhere. Where else but in our data memory!
· Where, in data memory, will we put the data we receive from the external device?
· How will we tell the plc when it's time to send our data (the data we stored in data memory) out the serial port?
· How will we know when we have received data from our external device?
If you know the above, then the rest is easy. If you don't know the above, then make something up and now the rest is easy. Huh??? Simple, pick a memory area to work with and figure out if we can choose the internal relays to use to send and receive data or if the plc has ones that are dedicated to this purpose. Sounds too simple?? (No way, it is simple!!)
Before we do it, let's get some more technical terms out of the way so we're on the same playing field.
· Buffer- A buffer is a fancy technical word that means a plastic bag. In other words, it's a temporary storage location where the plc or external device stores data it has received (or is waiting to send) via RS-232. When I go to the supermarket to buy my favorite tv dinners, I carry them home in a plastic bag. The plastic bag is not a permanent place for my food (are tv dinners really food??) but rather a temporary storage place for them until I get home. When I get home, I take them out of the bag and cook them. The supermarket was the external device where I got the data (tv dinners) from and my microwave is the plc. The plastic bag was the buffer (temporary storage place) that was holding my data (tv dinner) until I took them out to use (i.e cook).
· String- A string is a cool way of saying "a bunch of characters". The word "hello" is a string. It's a bunch of characters (i.e. h-e-l-l-o) that are connected (strung) together to mean something useful. "43770" is also a string. Although it makes no sense to us, it may mean something valuable to your plc or external device. It could be a command that tells your robot to send out its current coordinates. (or it could simply be the word "hello" upside down)
· Concatenate- This word is a mouthfull. Simply put, it means to combine 2 strings together to make one string. An example is combining the 2 strings "laser" and "jet" together to make one string... "laserjet".
With the mumbo-jumbo out of the way let's see it in action. Again, the memory locations and relays vary by manufacturer but the theory is universal.
1. We assign memory locations DM100 through DM102 to be where we'll put our data before we send it out the serial port. Note- Many plcs have dedicated areas of memory for this and only this purpose.
2. We'll assign internal relay 1000 to be our send relay. In other words, when we turn on 1000 the plc will send the data in DM100-DM102 out the serial port to our external device. Note again- Many plcs have dedicated relays (special utility relays) for this and only this purpose. It's great when the manufacturer makes our life easy!
We'll send the string "alr" out the plc serial port to an operator interface when our temp sensor input turns on. This means our oven has become too hot. When the operator interface receives this string it will displayed an alarm message for the operator to see. Look back on the ASCII chart and you'll see that "alr" is hexadecimal 61, 6C, 72. (a=61, l=6C, r=72) We'll write these ASCII characters (in hexadecimal form) into the individual data memory locations. We'll use DM100-102. How? Remember the LDA or MOV instruction? We'll turn on our send relay (1000) when our temperature sensor (0000) turns on. The ladder is shown below.
[image: image89.png]
Some plcs may not have dedicated internal relays that send out our data through the RS-232 port. We may have to assign them manually. Further, some plcs will have a special instruction to tell us where the data is stored and when to send the data. This instruction is commonly called AWT (ASCII Write) or RS. The theory is always the same though. Put the data in a memory location and then turn on a relay to send the data.

	

	

